Implant Cementation: Clinical Problems and Solutions

Chandr P. K. Wadhwan, DDS, MSD
Alfonso F. Piñeyro, DDS

Implant cementation as a means of attaching the coronal restoration to the implant fixture has become a routine dental procedure. However, the cementation procedure itself is not without issues (Figures 1a to 1c). Multiple case reports have highlighted problems with excess cement which could ultimately lead to implant failure.¹⁻³ A recent study reported that a direct link between excess cement and peri-implant disease exists.⁴ In this study, the average time before any clinical sign or symptom of peri-implant disease developing was 3 years, with a range of between 4 months and nearly 9.5 years. Little is known about peri-implant disease; it may be multifactorial, with general (patient originated) factors or local factors (at or near the implant site). One theory regarding why there is such a time delay before the problem appears is that the excess cement residue is colonized by bacteria.

This article discusses the clinical importance of avoiding the use of excessive implant cement when restoring implants, including 3 major reasons why an implant restoration is at greater risk from excess cement problems than a natural tooth restoration. Two case reports are presented that demonstrate the problems that can result from excess implant cement, and how these problems were treated.

CASE REPORT NO. 1
A 20-year-old female was referred to a periodontist for implant placement in the area of an existing mandibular right deciduous second molar, the permanent second bicuspid (tooth No. 29) having failed to develop. The site was evaluated for restorative and anatomical needs revealed by a cone beam computed tomography with a radiographic guide in situ. An implant (Replace 3.5 mm diameter, 11.5 mm length [Nobel Biocare]) was placed by the periodontist according to the diagnostic criteria derived from the scan. The implant was allowed to heal for a period of 3 months and then was evaluated for both radiographic and clinical integration. The patient returned to her restorative dentist for implant impressions, crown fabrication, and placement of the crown.

Two years postrestoration, the patient presented at the periodontist's office with inflammation around the implant site (Figures 1a to 1c). The periodontist removed the crown and abutment, then removed the implant. On inspecting the implant, cement could be seen around the implant body with deposits of calculus on top. The area was surgically debrided and a bioabsorbable collagen wound dressing (CollaPlug [Zimmer Dental]) was sutured across the surgical site. The area was left to heal for 3 months, then a crestal incision was made to retain the attached gingiva and to expose the proposed implant site. The bony defect had filled in, although there was a slight residual buccolingual defect.

A new implant was placed along with a small amount of xenograft mineralized material (Bio-oss [Osteohealth]). The implant site was allowed to heal for 4 months, then the patient was sent to the restoring dentist for placement of a definitive crown, with instructions to use a screw-retained prosthesis.

CASE REPORT NO. 2
A 53-year-old female patient was referred to an implant surgeon with an externally resorbing lesion affecting her maxillary right canine. Although the lesion had been repaired, the patient continued to experience discomfort from this tooth (Figures 2a to 2c). The patient was informed of the treatment options available to her: retain the tooth, undergo endodontic therapy, crown lengthening (to provide enough tooth ferrule), and post/core and crown placement; or extraction of the tooth and replacement with an immediate implant (provided the facial bony plate remained intact at the time of the surgery). The decision to extract and replace with an immediate implant was made by the patient. The tooth was extracted atraumatically, the facial bony plate was confirmed as being intact, and an immediate implant was placed. The critical gap was greater than 2 mm,⁵ so a xenograft bone grafting material (Bio-oss) was placed between the implant and the buccal bone. A temporary abutment was reduced in height, and acrylic was added to form a custom healing abutment. The purpose was to maintain the soft-tissue profile and provide a support frame for the soft tissue to heal against. The patient was provided with an Essix splint for aesthetic purposes only.

Five months after the implant was placed, the site was evaluated and the implant was checked for integration both clinically and radiographically. The patient returned to the restorative dentist for impression-making and implant crown restoration.

The patient returned to the implant surgeon 5 years later complaining of discomfort around the implant and a feeling of “puffiness.

Little is known about peri-implant disease; it may be multifactorial....

continued on page 58
implant cementation...

continued from page 56

ness” (Figures 2d and 2e). The soft tissue appeared inflamed and cyanotic. A decision was made to raise a full-thickness soft-tissue flap and evaluate the implant. The exposed implant showed facial fenestration, with cement residue visible on the implant body. Only a thin bridge of bone existed near the coronal aspect. The cement was removed and the implant was mechanically cleaned using hand instrumentation followed by Air-Flow Perio (EMS), a commercially available amino acid glyciné which has been shown to be useful in the removal of bacterial deposits from titanium dental implant surfaces. A mineral xenograft material (Bio-oss) was placed over the implant, supported by a resorbable collagen membrane. The soft tissues were carefully replaced and sutured.

The patient healed uneventfully and the implant area is currently being monitored every 4 months. No reattachment of bone or improvement in osseointegration is expected; however, it is hoped the soft tissues will remain healthy and closely adapted to the implant body, which is presently stable. Should any adverse effects occur, the implant will be immediately removed and the site surgically debrided, grafted, and a new implant placed.

DISCUSSION

These 2 case reports represent an interesting phenomenon noted with implants: implant disease processes tend to develop either very early—for example, surgical failure—or later on, as with the excess cement issue. Frequently, severe pain is not noticed by the patient, and the gingival tissues may appear slightly inflamed, hiding the problem. This is unlike dentistry involving natural teeth, where problems including pain tend to be more acute and develop early.

Tooth-borne cementation has existed in dentistry for close to 100 years. Excess cement found on tooth-retained restorations with healthy periodontal tissues present few if any problems. This is different for implant-retained restorations, even when the implant has been considered integrated clinically and radiographically.

There are 3 major reasons why an implant restoration is at greater risk from excess cement problems when compared to a natural tooth: biology, tissue depth, and cement types.

1. Biology—The attachment apparatus of the soft tissues is notably different around a tooth when compared to a root form titanium implant (Figures 3a and 3b). In teeth, the attachment of connective tissue fiber bundles is by means of living tissue in the form of root cementum with horizontal fibers directly inserting into it. These entrapped fibers may become incorporated and mineralized within the cementum layer, resulting in a strong attachment of the healthy soft-tissue complex, which is then held tightly against the tooth. In the case of an implant, the connective tissue attachment has fewer fiber bundles, their orientation tends to be parallel and parallel-oblique to the implant long axis, and there is no direct insertion of the fibers into the implant material (there is no cementum). The connective tissue is held in place by a hemidesmosomal adhesion only.

2. Tissue depth—Tooth preparations for cemented restorations commonly have a finish line that is supragingival wherever possible; the only sites that are frequently subgingival are in aesthetic areas. The outline form also follows the tissue height contour as it changes around the tooth, moving higher interproximally where the papillae are. Comparing with implants, the head of an implant is commonly flat and often counter sunken in the anterior region 2 to 4 mm below the level of the midbuccal gingival tissue to allow for emergence profile contour. Because of the scallop of the gingival tissues, this countersinking can be about 5 to 7 mm from the tip of the papilla to the implant platform at the interproximal area of an anterior tooth. Increased tissue depths around implants present problems when cleaning excess cement. Raising the cement margins by using custom abutments subgingivally will result in remnants of excess cement.

3. Cement types—Many forms of cement have been developed for dental use during the last 100 years or more. All have been predominately designed for cementing restorations to teeth, where the principal cause of failure is recurrent dental caries. This disease does not occur in dental implants, which questions the need for the tooth-specific cements. When cementing a crown to a natural tooth, the main challenge relates to the nature of the pulp, dentin, and enamel. Implant abutments are fabricated from a far greater variety of materials. These include titanium alloys, precious metal alloys, alumina, polaryl-ether-ether-ketone, and zirconia; some of these also present problems with cement retention and adhesion. This has resulted in cement manufacturers designing universal cement materials which have improved adhesive capabilities. This increased retention and bonding strength to the desired abutment material also make cement removal in unwanted areas more difficult or impossible. Studies in the late 1990s reported on the inability...
Implant Cementation...

continued from page 58

to clean resin-based materials from implant surfaces\(^{14}\) which at that time were predominantly smooth. With today’s rougher surface implants and advances in the adhesive capabilities of cements, this may present even more difficulties.

Many commonly used cements cannot be seen radiographically\(^{12}\) (Figures 4a and 4b), and to further compound the detection issue, some manufacturers even go to the extent of making the cements with “aesthetic gingival shading for natural appearance”—these cements are actually pink. This again greatly interferes with the ability of the clinician to find excess cement, since the pink-colored cement easily blends into the surrounding tissues.

Some cements come highly recommended for their retentive capabilities, with literature supporting their use for implants\(^{13}\) (eg, Durelon [3M ESPE]). However, when reading the manufacturer’s instructions, it clearly states: “not suitable for cementing titanium.” This again presents issues, as most implants are fabricated from different grades of commercially pure titanium or alloys. When 3M ESPE was contacted, the research department reported that Durelon was found to corrode titanium (e-mail communication, March 2009). This may account for the improved retention when used with titanium implant abutments, but is biologically undesirable as the mobilization of metal ions can be transferred into the tissues and is a known cause of inflammation. Also, should any cement get onto the implant body itself, the corrosion effects would relate directly to the implant body and surrounding tissues.

CLINICAL SOLUTIONS

The ideal properties for a dental cement are often listed as: low viscosity and film thickness, long working time with rapid set at oral temperatures, low solubility, high compressive and tensile strengths, high proportional limit, adhesion to tooth structure and restorative materials, anticariogenic properties, biocompatibility, translucency, and radiopacity.\(^{14}\) Unfortunately, this list must be tempered by the clinical situation in which the material is being used. For example, a translucent cement may be ideal for an aesthetic restoration on a tooth, but would be inappropriate with an implant restoration. Adhesion to a tooth, with the ability to prevent caries, again may be completely irrelevant when choosing a cement for an implant, where caries is not an issue. If the cement adheres strongly to titanium, especially with a rough surface, there is a risk that peri-implant disease may result. Low viscosity and flow may also affect cemented implant restorations, because frequently soft tissues are purposely displaced by seating an implant crown. When this occurs, the cement can easily be expressed into the more vulnerable soft peri-implant tissues, which is unlike a tooth, where the margins tend to be considerably closer to the free gingival margin (or even supragingival), and the attachment mechanism for the soft tissues is much more robust.

No ideal cement exists in dentistry, which explains the large selection of different materials available. The implant restoring dentist should also be aware of the mechanisms of screw fasteners, which under ideal conditions (using appropriate torque values) can actually enhance a joint, clamping components together and preventing loosening effects. A systematic review\(^{15}\) of the incidence of screw loosening in single implant restorations actually concluded that abutment screw loosening is a rare event in single-implant restorations regardless of the geometry of implant-abutment connection, provided that proper anttorotational features and torque are employed.

It is the authors’ opinion that, as with tooth form dentistry, in most cases the restoration should be cemented permanently, with the retention properties of the cementing media tempered against other factors, such as ability to remove excess cement, color, biocompatibility, nondestructive to materials, radiopacity, and other factors.

The desire to develop implant restoration emergence profiles via restorative procedures that mimic the natural dentition also impacts the health of the peri-implant tissue, and is a topic that is beyond the scope of this article. For the reasons stated above, it is clear that any implant cement in excess may pose a clinical problem. One means of reducing the problem is controlling cement excess by reducing the amount of cement used in the first instance. Several techniques have been described in the literature whereby excess cement is extruded prior to cementation.\(^{16,17}\) Some of these use the implant system’s manufactured “copy” abutment, which may not completely fulfill the function of precoating the inside of the restoration, as many copy abutments are in fact larger than the actual abutment that is used intraorally. Therefore, the coating will be insufficient to fill the cement space.

An improved method is to fabricate a copy abutment out of a fast-setting vinyl polysiloxane (VPS) material (eg, Blu-Mousse [Parkell]) using a liner material such as polytetrafluoroethylene (PTFE), which is readily available at most hardware stores and sold as “plumbers’ tape.” The PTFE is easily sterilized by cutting into short strips 6 inches long, placing in a sterilization pouch, and autoclaving. The PTFE is cut into a half-inch strip (Figures 5a to 5d) then adapted to the inside of the crown. To help the tape adapt, precoat...
the crown with KY Jelly (Johnson & Johnson) or other water-soluble lubricant, which is washed out after the custom copy abutment is made. This spacer will provide a luting space of 50 µm (approximately the ideal thickness for cement space) such that the copy abutment fabricated is 50 µm smaller than the crown itself. The spacer is removed when the VPS copy abutment material is set. The crown may then be loaded with cement arbitrarily, so that when the copy abutment is inserted into the crown, as it is seated completely, excess is extruded. All of this is accomplished extraorally. The crown intaglio is then checked for voids (a little extra cement may be used if required) and the precoated crown is inserted with close to the ideal amount of cement (Figures 5a to 5d). The added advantage of rapid cleanup is also of clinical benefit. This technique can also be used on multiple abutments, eg, a bridge (Figures 6a and 6b), and is not limited to the use of implants alone; it can also be used for natural teeth.

Another means of solving the excess cement problem is to consider screw-retained restorations; for example, the implant crown with an adhesive plug (ICAP) (Figures 7a and 7b). Screw-retained crowns are considered by some as being problematic with regard to aesthetics and control of the occlusion; however, the ICAP restoration has overcome both of these complaints. The ICAP is a simple means of closing a screw access hole rapidly and easily, which also eliminates all cement subgingivally. A pressed porcelain plug is made which is similar to an inlay, and the porcelain can be etched with hydrofluoric acid, silanated, and cemented into the screw access hole. With the advent of pressed ceramic systems, the ability to control aesthetics and occlusion is possible.

CONCLUSION

The use of inappropriate or excessive amounts of cement when placing implant restorations can result in clinical complications. With judicious material selection (including following the manufacturer’s instructions), careful prosthetic management of margin height, and using techniques that help reduce cement extrusion (possibly even converting to screw retention), the clinician may...
reduce or even eliminate these cement-related issues.

References

Dr. Wadhwani received his specialty certificate in prosthodontics with a master’s degree from the University of Washington School of Dentistry. He is currently in private practice in Bellevue and past president of the Washington State Society of Prosthodontics. He is an affiliate instructor at the University of Washington Department of Restorative Dentistry. He has authored several technique and research papers on the subject of implants, and is involved in numerous research projects. He can be reached via email at the address info@nwprosthodontics.com.

Dr. Piñeyro completed his specialty training in prosthodontics at the University of Rochester Eastman Dental Center. He is currently in private practice in Bellevue and is past president of the Washington State Society of Prosthodontics. He is an affiliate instructor at the University of Washington Department of Restorative Dentistry. He has authored several technique and research papers on the subject of implants and is involved in numerous research projects. He can be reached at info@nwprosthodontics.com.

Disclosure: Both authors have received payment for lecturing for Straumann and Nobel Biocare.